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Absfracf—The exact synthesis and design of a broad class of

quarter-wave TEM mode filters is presented in a three-step proce-

dure. The theory is applicable to all microwave filter forms consisting

entirely of a cascade of quarter-wave lines, quarter-wave stubs, and

coupled quarter-wave lines. The exact design of many conventional

filter forms that heretofore could only be designed using approximate

methods is possible using the techniques and functions described.
General approximating functions that give the “best” transmission
response in a Butterworth or Chebyshev sense are derived. The use

of a maximum number of available singularities to augment the
filter skirt response leads to a miniium element filter termed
“optimum multiple.” An optimum multipole design insures the

“best” possible response for the minimum element and all cor-
responding redundant element networks. The designer has the
freedom of introducing sufficient redundancy to obtain a design that

is practical to construct, but which still realizes the optimum re-

sponse. Judicious choice of network form often results in improved

performance and reduced size in comparison with many conventional

filter forms. Design procedures are presented that allow the practical
realization of distributed filter networks in the form of quarter-wave

lines. A design example and experimental results are given to con-
firm the theory.

1. INTRODUCTION

P

REVIOUS TEM distributed filter designs have

made use of either approximate image parameter

techniques [1 ]– [3 ] or exact modern network

techniques [4]–[12 ]. The modern network approach

allows the realization of prescribed transfer character-

istics at all frequencies and is, therefore, preferred,

especially for wide-band-pass or band-stop responses of

30 per cent or greater. However, in the exact design

approach, quarter-wave unit elements often serve only

to spatially separate adjacent distributed stub-type ele-

ments so their fields do not interact. In most designs of

this type, no use has been made of the unit elements to

help in achieving a desired maximally flat or equal ripple

response. Other microwave filter forms, previously de-

signed by approximate methods, depend almost entirely

on the unit element “spacers” to obtain a useful re-

sponse. A method was sought for obtaining an exact

procedure which would permit an optimum design in

each of these important cases.

This paper presents the theory and design of a broad

class of TEM filters employing commensurate length

lines. The theory includes all microwave filter forms con-

sisting entirely of a cascade of quarter-wave lines,

quarter-wave stubs, and coupled quarter-wave lines. A

filter form termed ‘(optimum multiple>) is obtainecf
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when each line length element characterized in the

theory is used to create a complex plane pole to augment

the filter skirt response. Most conventional network

forms are obtained from the optimum multipole form by

introducing redundant elements.

Throughout the paper a heuristic understanding is

stressed at the possible expense of mathematical rigor.

An outline is given for the steps employed in the syn-

thesis of distributed TEM filters; however, many de-

tails of modern network synthesis are beyond the scope

of this paper and may be reviewed in existing publi-

cations [13]–[15].

II. TEM DISTRIBUTED NETWORKS

The application of modern network theory to the

design of microwave TEM distributed networks is based

upon a complex plane transformation demonstrated by

Richards [16 ] in 1948. He showed that distributed net-

works, composed of commensurate lengths of trans-

mission line and lumped resistors, could be treated in

analysis or synthesis as lumped L- C-R networks by

using the complex frequency variable

S=jfl=jtan~ (1)

where O is real and WOis the radian frequency for which

the transmission lines are a quarter wavelength. The

tangent m~pping function converts the range of fre-

quencies —WO<U<WO into the range — ~ <f2< ~ and

the mapping is repetitious in increments of 2ti0. For

example, the high-pass response of a lumped element

filter in the frequency variable Q maps into a band-pass

response in u about the quarter-wave frequency OJofor

the corresponding distributed filter, as shown in Fig. 1.

The one-port impedance of a short-circuited trans-

mission line

(
Z= jtan

lflz, [+12,

:U ‘I-Q--2.
05 1

(a) (b)

Fig. 1. Mapping properties of the transformation $7= tan rru/2w,.
(a) Prototype lumped element high-pass. (b) Corresponding dis-
tributed element band-pass,
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corresponds in the mapping transformation to the im-

pedance of a lumped inductor, Z =jccIL. Similarly, the

admittance of an open-circuit line

‘=(’tanayoc
corresponds to the admittance of a lumped capacitor

Y= juC. The distributed characteristic values of ZO~ and

YOC correspond, respectively, to L and C for lumped ele-

ments. Throughout the remainder of this paper, the

symbols L (inductor) and C (capacitor) will be used to

designate the characteristic impedance or admittance of

a short-circuited or open-circuited quarter-wave line,

respectively.

The application of exact synthesis methods to micro-

wave networks using the transformation of (1) is re-

viewed in detail by Wenzel [4]. The “unit element”

(u.e.), a quarter-wave two-port transmission line of

characteristic impedance Z is introduced as a network

element which has no identical counterpart in lumped

element theory. Kuroda’s Identities [4], [.s ], [17 ] are

also introduced to enable the interchange of cascaded

u.e.’s with series or shunt distributed 1.’s or C’s.

III. THE OPTIMUM MULTIPOLE FILTER

An optimum multipole filter is defined as a non-

redundant two-port network constructed of elements

whose values have been chosen to yield the best approxi-

mation to a rectangular transfer response in a Butter-

worth or Chebyshev sense. A nonredundant network is

one in which each element contributes a complex plane

pole that can be used to augment the filter skirt re-

sponse. Every nonredundant combination of quarter-

wave stubs (LC elements) and unit elements can be used

to obtain an optimum multipole filter. All filters em-

ploying only quarter-wave lines can be reduced to non-

redundant form by suitable application of Kuroda’s

Identities and/or series parallel reduction. It is obvious

that the introduction of redundant elements cannot lead

to a network form whose response is better than that of

the corresponding optimum multipole filter.

As a specific example of the application of the previous

statements to a network containing unit elements, con-

sider the familiar parallel coupled band-pass filter. The

conventional form consists of a cascade of series capaci-

tors and unit elements. A filter with K series capacitors

and N unit elements can be reduced to a nonredundant

form having one series capacitor and iV unit elements

[4]. (This assumes that none of the u .e.’s are redun-

dant.) Assignment of element values in accordance with

the theory to be described gives an optimum multipole

design and insures the best possible response for the

minimum element network and for any redundant ele-

ment network derived therefrom. The designer now has

the freedom of introducing just enough redundancy to

obtain a filter that is practical to construct but which

realizes the optimum multipole response. In fact, a

practical redundant network can often be obtained

directly from the synthesis procedure, especially if a

specific network realization is desired.~

IV. DESIGN OF OPTIMUM DISTRIBUTED FILTERS

The exact design of microwave TEM clistribu ted

filters based on modern network theory invcllves three

distinct steps:

1)

2)

3)

Determination of the polynomial form of the r:itio

of reflection to transmission coefficient for a com-

posite two-port filter containing both~ quarter-

wave short or open-circuited stubs (L C’s) and

quarter-wave impedance transforming two-ports

(u.e.’s).

Development of the approximating function,

usually chosen as maximally flat (Butterworth~l or

equal ripple (Chebyshev), used to approximate a

rectangular low-pass or high-pass prototype power

transmission characteristic.

Synthesis and physical realization of a practical

network in the form of distributed quarter-wave

lines.

A. Step I—Polynomial Ratio of Rej?ected

to Transmitted Power

The polynomial ratio of reflection to transmission Ico-

efficient for a cascade of unit elements and prototype

LC distributed elements can be obtained by multipli-

cation of wave cascading matrices R [18]defined by

[::1= [:: 3[::1
‘i%: ‘3[2 ‘2)

In this equation al, bl, are the left-hand port incident

and reflected wave amplitudes, respectively, and az., bz

are those of the right-hand port. The rij’s are the R-

matrix elements, the Sii’s are the scattering .$-matrix ele-

ments, and A, = Sllsza —s12s21 is the scattering matrix

determinant. The individual R-matrices of cascaded

two-ports can be multiplied to give the overall R-matrix

of the cascade.

The constant matrix A with transpose ~, is defined by

‘=+[-: ‘:1 (3)

and appears in the R-matrix for each of the distributed

L’s, C’s and u.e.’s of Table I.

1) Higlz-pass prototype: The high-pass prototype re-

sponse, which, as shown in Fig. 1, gives rise to a dis-

tributed filter band-pass response, will be considered

~See, for example? Wenzel [4], pp 109–1 10. The first synthmis
procedure described gwes an optimum multipole network, while the
second yields a redundant form in which all unit elements were chosen
to have unity characteristic impedance. Depending on the element
values, one form may be more suitable than the other from a practiral
viewpoint.
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TABLE I

WAVE CASCADE MATRIX, R, FOR DISTRIBUTED L C LADDER AND
UNIT ELEMENTS. THE CONSTANT MATRIX, A, IS DiZFINED

IN (3), AND 1 H THE IDENTITY MATRIX

FILTER ELEMENTS SCHEMATIC R -MATRIX [

first. Such a filter maybe comprised of distributed series

C’s, shunt L’s, u.e.’s, and a unit terminating load. The

C’s, L’s, and u.e.’s may occur in random sequence; howT-

ever, in order to be a nonredundant filter, no two C’s nor

two L’s may occur adjacent to each other even if sepa-

rated by one or more u.e.’s.z It is noted in Table I that

each of the lossless high-pass elements (C’s, L’s, u.e.’s)

has an R-matrix which comprises a scalar denominator

factor multiplied by a matrix which is linear in the fre-

quency parameter S. The scalar denominator factor of

each R-matrix contains S to the first order. Thus, an

optimum high-pass filter, having a mixed cascade of m

high-pass ladder elements and n unit elements termi-

nated in a unit load, will have an overall R-matrix of

the form

‘=(mi++m+n’s)(4)

where B~+n (S) is an (m+ n)th degree 2 X 2 matrix pol y-

nomial in S,

[

bll(s) bids)at+.(s)= 1bzl(s) 622(s) ‘m+rl “

(5)

The R-matrix element of interest in (2) is 712= sll/~zl

representing the ratio of input reflected wave to that

transmitted into the load.

“12=s’1’s21=(Xiwb’’m+(s)“)
The overall cascade input reflection coefficient p = sII

and the transmission coefficient into the unit load

t = SZI are now renamed for ease in recognition. Total

power into the filter is conserved, thus

(7)

which can be rearranged to show the dependence of the

power transmission rasponse on rlz = p/t, i.e.,

2 Otherwise the elements may be combined, reducing the total
number, by simple parallel or series combinations possibly in con-
junction with use of one of Kuroda’s Identities.

\tl’= 1 1

l+lp]’/ lt\’=l+l Y,21’”
(8)

Equation (6) for 7N(S), when multiplied by 712( – S) to

give \ VIZ 12, results in a ratio of (m +n)th degree poly-

nomials in ( — S2). The general form of the resultant

numerator polynomial, which has real coefficients, will

not change if each term is multiplied by a real constant

involving S.2 = (j tan 0,) 2, where 19e= 7raG/2w0 and co. is

designated to be the filter cutoff frequency. Then

or from (l),

+$=(+a’%%)’np~+(’10)
where P~+~ is an (m+ n)th degree polynomial in — S2/
_ s>.

2) Low-pass $rototy$e: The individual R-matrices of

an optimum low-pass (L-P) filter having m low-pass

ladder elements, n unit elements, and a unit termination,

may be multiplied to obtain the overall R-matrix of the

cascade. The low~pass optimum filter may be comprised

of series L’s, shunt C’s and u.e.’s in random sequence;

however, to be nonredundant, L’s must be adjacent to

C’s if not separated by a u.e., or L’s must be adjacent

to each other (and likewise C’S) if separated by a u.e.

By applying a procedure similar to that used above

for the high-pass filter, the low-pass prototype response

ratio of reflected to transmitted power is given by:

or by

8=(%)”(3’”’.+(%)’12)
where Q~+n is an (m +n) th degree polynomial in

(–s2/–s’).

B. Step 2—Approximating Functions

The ideal microwave prototype filter has a transmis-

sion power-amplitude response, (8), which is rectangu-

lar; i.e., as frequency increases through cutoff, it is de-

sired that transmission ] t ] 2 change from zero to unity

for a high-pass prototype and from unity to zero for a

low-pass prototype, as shown in Fig. 2.

1,12
1t-l ‘“;ll--

I .
* ~

Q, Q

(a) (b)

Fig. 2. Ideal rectangular transmission amplitude power
response. (a) L-P prototpye. (b) H-P prototype.
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This rectangular response cannot be realized exactly

and, therefore, must be approximated i n some manner.

The two most common approximations, which are con-

sidered here for application to the optimum multipole

filter are the maximally flat (Butterworth) and the equal

ripple (Chebyshev).

1) Buttenuorh%: The maximally flat approximation for

the high-pass prototype results f~om choosing coefti-

response is developed (see Appendix) from a COnSt21nt

amplitude rational fraction all-pass function.

This same development, with each frequency para m-

eter replaced by its inverse, gives the proper coeficie nts

of Q~+n (11) for equal ripple pass band response of the

low-pass prototype.

The Chebyshev approximating functions are given

by:

H-P :
%= ‘2[T.(:)T(:Z)- ‘m(w$!al’

‘e2[Tm(%)T7L(%)”1’m(%)un(%)12
L-P :

+;= ‘21T@T(%%)- ‘%)’%%%)]’

“2[T4%)TG3- ‘morn]’ (14)

cients of the (w+n)th degree pol~mormial P~+n (9) in

a manner such that all but the highest w-der derivative

of I p 12/I tl 2, taken with respect to S–l, are zero at

S-l = O (S= w). This criterion requires that all co-

efficients in P~~n be zero except the ccmstant term. A

constant term of unity defines the cutoff frequency

o.= S,/j to occur at half power ( – 3 d13) as verified by

inspection of (8) and (9).

Similarly, all coefficients of Q~+n (1 ]1) are set equal

to zero, except the constant coefficient of unity, to ob-

tain the low-pass maximally flat approximation. In the

low-pass case, all but the highest order derivative of

lP1’/l ~lz, taken with respect to S, are zero at S=0.

The Butterworth approximating functions are then

given by:

H-P :
Pa=”’”

‘(%)”(5T

‘(3%3’” ’13)
Note that the low-pass approximation can be obtained

directly from the high-pass b~’ replacing each frequency

parameter (i.e., S, S.) by its respective inverse

(S-’, S.-’), and vice versa.

2) Chebyskev: An equal ripple approximation for the

high-pass prototype results from choosing coefficients of

the polynomial, Pm+. (9), in such a manner that the

pass band response ripples between the values of unity

and (1 +ez)–l. The polynomial form which exhibits this

where

T~(.v) = cos (m arc cos x) and tln(:~) = sin (m arc cos x)

are unnormalized mth degree Chebyshev polynomials (of

the first and second kinds, respectively [19 ].

C. Step 3—Network Synthesis

The final step in obtaining an optimum filter is solving

the realization problem; i.e., it is desired to synthesize

a distributed network with a physical response corre-

sponding to the admissible approximating function of

(13) or (14). The general form of these functions was

obtained by considering a cascade of unit elements and

distributed L’s and C’s. If the input impedance of this

cascade is determined from the specified power function,

Richards’ Theorem3 can be applied to determine the

unit element values, and pole removing techniques

[13]-[15] can be used to determine the LC values. The

power reflection coefficient ] p 12= 1 – [ t[2=PF where the

bar denotes complex conjugate, can be obtained from

the approximating function for I p 12/I tl 2. Because the

network is to be physically realizable, the reflection co-

efficient p must have no poles in the right half plane.

Since the network functions under consideration do not

have j-axis poles, the desired reflection coefficient can

be determined from the squared approximating functicm

Ipl 2 by finding roots of the numerator and denominator

polynomials and associating the left half-plane poles

with P and the right half-plane poles with p. The on] y

restriction on the zeros of p is that they be chosen i n

conjugate pairs such that the numerator of Pp i:j the n~~-

merator of I p ] ‘.4 For many practical microwave filters,

all zeros lie on the imaginary axis and no alternate

choices are possible.

3 For a statement and discussion of Richard’s Theorem see [4], [5],
[6], [8], and [16].

4 For a discussion of the effects of different zero distributions,
see Weinberg [14], pp 592–595.
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Once a reflection coefficient has been obtained by the

above procedure, the transformation

l+p
Zi* = —

l–p
(15)

yields the input impedance of one possible network and

the opposite choice for the algebraic sign of p gives the

input impedance of the dual network. The choice of

either network is dictated by the physical configuration

of the desired realization and the element values ob-

tained from the synthesis procedure.

Many variations in network form, each having a mini-

mum number of elements, are possible. Specifically,

there exists a number of configurations equal to the

number of unique networks that can be obtained by

applying Kuroda’s Identities. Furthermore, redundancy

(for example, replacing a series inductor by two inductors

or adding u.e.’s whose impedance is the same as that of

the load) allows the possibility of additional network

forms. Any one of the minimum element networks is a

permissible mathematical solution; however, a practical

realization may require that various network forms be

investigated.

The schematic forms of two symmetric, doubly termi-

nated, optimum filters and their respective duals are

shown in Table II. The forms shown utilize the maxi-

mum number of elements that can usually be obtained

in a practical network.

In some specific cases, series elements can be con-

tained within shunt stubs, and multiple stubs can be

contained within u.e,’s, thereby increasing filter com-

plexity for a given number of unit elements. In general,

this can be accomplished only in relatively wide-band

designs and at lower microwave frequencies where ele-

ment value restrictions and complicated junctions do

not present serious limitations. Symmetry in the as-

sumed forms requires equal terminating impedances;

however, for the band-pass case, Kuroda’s Identities

often can be applied to provide for unequal termina-

tions. In general, the filters need not be symmetric and

all combinations of m and n may be used. The networks

shown in Table II can be used as a guide in applying

Richards’ Theorem and pole removing techniques to

Zi., together with application of Kuroda’s Identities,

to obtain equivalent forms. Because of the assumed

symmetry, only part of each network need be synthe-

sized, For example, in the symmetrical case of five

ladder elements (m= 5) and two unit elements (n= 2),

the network is synthesized by applying Richards’

Theorem once to obtain the unit element value followed

by three pole removals.

It is evident that an optimum filter can contain many

sections in a relatively short overall length. In some

applications, use of the full number of sections possible

in a given length may not be necessary or practical. For

example, networks having two u.e.’s can contain up to

five LC elements (not including the possibility of series

stubs within shunt elements and multiple stubs in

TABLE II

EXAMPLES OF PRACTICAL OPTIMUM MULTIPOLE FILTER
NETWORKS AND THEIR RESPECTIVE DUALS

{.) ,.,

!

! 4

,

TABLE III

SOME COMMON FILTER FORMS CONTAINING FEWER THAN MAXIMUM
ELEMENTS OR REDUNDANT ELEMENTS THAT CAN BE EXACTLY

DESIGNED TO GIVE AN OPTIMUM MULTIPOLE RESPONSE
BY SUITABLE CHOICE OF w AND n

COMMONREAL1ZATION FOR. ALL SHUNT ,,”, F,LTE!+0,
PARALLEL COU,LED LINES “,,” SHORT c,RCUITED 5,,S

I cm,

(k)

*UMBER‘UMBER ‘m””””””m’.,c. ,, ...

CO,”ON REALIZATION FOR, QUARTER WAVE SPACED
5“UNT mm CIRCUITED 5,”8, WJ,VALE,TTo FILTER

FOR, (d, BY APPLYING KuRODAS IDENTITY

1 I,,,

gu,.y ““.8ER
0,.. $ )m--ml

Ill .0..0, RE,L,2 ATION FO!4M (2”., TER Y,”E WAC,,
5FR,ES COAXIAL STU85 OR PARALLEL COUPLED BARS I

u.e.’s). The use of fewer LC elements or redundancy

may in some cases simplify the construction of the filter

and may also ease the element value requirements.

Several common filter forms that contain fewer than a

maximum number of elements, or redundant elements,

are listed in Table III. Networks of this type with opti-

mum response can be exactly synthesized by using the

appropriate m and n in (13) or (14).

Bandwidth scaling of optimum filter network element

values is not as easily accomplished as it is in networks

incorporating only ladder elements. For networks that

have a ladder prototype, a set of normalized element

values can be determined and bandwidth renormaliza-

tion may be accomplished by multiplying these values

by a constant. Variation of the bandwidth determining

constant (S,) for the general optimum filter changes the

element values in a manner which may not permit a

simple calculation to yield the new values. A digital

computer, however, can be used to obtain tables of ele-

ment values for a wide range of bandwidths.

The manner in which prototype element values are

converted to physical dimensions and a general discus-

sion of equivalent network forms can be found in the

literature [4], [5], [6], [9], [12].
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V. EXPERIMENTAL EVALUATION

A seven-section equal ripple band-pass filter of 3 to 1 bandwidth5 will be considered in detail as a design example.

The filter, consisting of two unit elements and five LC elements, will be designed to have 0.1 dB ripple in the pass

band. The normalized cutoff frequency for a 3 to 1 band is SC =j. From (8) and (14) the transmission function

is given by:

]j\2=—— l+OO’’’’(:):’(;G)G)-‘T’(3W=W
(16)

Substitution of S. =j, simplification of the resultant ratio of polynomials, and use of the identity \ p I 2+ I t[“= 1

gives:

Ipl’=
[0.98S’ + 8.15S’ + 17.64S’ + 10.78]”

–S’4 + 2.96S’2 + 14.96S’0 + 100.96S8 + 308.69S’ + 487.06S4 + 380.46S2 + 116.fi “
(17)

Roots of the denominator are obtained with the use of a computer and the left-hand plane poles are associated

with p. Since the

Use of the linear

numerator of I p ] 2 is a perfect square, the numerator of p is obtainable by inspection:

0.98SC + 8.15S4 + 17.64S2 + 10.78
(18)

p = – ST+ 6.16S’ + 17.47S’ + 32.36S4 + 39.13S’ + 37.57S2 + 20.73S + 10.78 “

transformation Zi. = (1 +p)/ (1 –p) yields

S + 5.18S~ + 17.47S5 + 24.21S4 + 39.13S3 + 19.93S2 + 20.73S
Zi~ =

S7 + 7.13S’ + 17.47S6 + 40.51S4 + 39.13S3 + 55.21S2 + 20.73S + 21.56 “
(19)

One possible network form is shown in Table II(a). Determination of element values begins with the removal

of a unit element by application of F~ichards’ Theorem to give Z.,,. = Zia(l) = 0.63. The impedance of the re-

maining network after removal of the u.e. is:

SZi*(l) – Zin(S)
Z,:(S) = Z,n(l)

SZi*(S) – Zin(l)

or

1,84S’ + 10.20S’ + 18.84S4 + 33.65S3 + 20.08S2 + 20.98S
Zi~’(S) =

4.64S6 -I- 21.09s5 + 64.83Sd + 82.37S8 + 128.05S2 + 60.52S + 62.96
(20)

after cancellation of the common Sz — I factor.

Next, a shunt inductor of value LI ❑ = 0.33 is removed by dividing the numerator of YiD’ (S) = l/Zi.’ (S) by its

denominator.G A series capacitor of value C= 1.27 and a shunt inductor of value L’= 0.26 are obtained from the

impedance of the remaining network,

5.54.!95+ 30.73S’ + 56.77S3 + 101.42S2 + 60.52S + 62.96
Zin’’(s) = — (2!1)

1.3.98S5 + 46.87S4 + 102.76S3 + 77.15S2 -1- 80.25S

~ AS with conventional Chebyshev-type characteristics, the bandwidth is measured between the outer ripple points.
c This step removes a simple pole of Yin at .S= O and is the same technique that is used to synthesize lumped element ladder netwcwks

[13]-[15].
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in a similar manner. A diagram of the synthesis steps,

together with the completely synthesized network, is

shown in Fig. 3.

In order to obtain a network configuration that is

convenient to construct, the following Kuroda Identity

transformations are performed. Referring to Fig. 4, the

0.33 ohm distributed inductors and 1.27 mho distributed

capacitors are transformed to the outside of the unit ele-

ments. Because the network is symmetric, the trans-

formers can be moved to the center of the network and

eliminated as in Fig. 4(c) [4]. The network of Fig. 4(c)

contains a minimum number of elements and is still in

optimum multipole form.7 However, the center inductor

value is low, requiring a 5.15 ohm shunt stub in a 50 ohm

terminated filter realization. Two parallel 10.3 ohm

stubs could be used, one on either side of the center line,

but these values are still low to realize easily. To obtain

more convenient center element values, redundant ele-

ments are introduced by splitting the center inductor

into three inductors. The three element values are

chosen such that application of Kuroda’s Identity and

elimination of the resulting transformers gives element

values that do not differ greatly from the characteristic

impedance of the terminations. The final network is

shown in Fig. 4(f). The introduction of redundant ele-

ments in the manner described has yielded a network

7 This form can be obtained directly from (19) without the aid of
Kuroda’s Identities by removing a shunt inductor, series capacitor,
unit element, and shunt inductor using the synthesis techniques
described.

EtD‘!. + N 1

(a)

(b)

(c)

-’
(d)

(e)

Fig. 3. Synthesis steps in seven-section filter design example. (a)
Unsynthesized network. (b) Removal of a unit element by use of
Richards’ Theorem. (c) Removal of a shunt stub by removing a
pole of Yi,{(S) at .S= O. (d) Removal of two more stubs in a

manner similar to (c). (e) Final network obtained by symmetry.

with realizable element values, but has not resulted in

increasing the filter length. The final filter is not in

optimum m ultipole form, but it does realize the opti-

mum response for m = 5 and n =2.

A trial filter was constructed based on the parameters

used in the design example. A ground plane spacing of

0.200 inch was chosen and center conductor rod dimen-

sions were obtained with the aid of standard graphs

[20]. The unit elements were made one-quarter wave-

length long at 2.175 Gc. Stub lengths were determined

experimentally by adjusting each to produce a zero of

transmission at 4.350 Gc by temporarily shortening all

other stubs. A line drawing of the entire filter is shown

in Fig. 5 and a photograph is shown in Fig. 6. To reduce

undesirable junction effects, the two outer junctions

were mitered as shown in Fig. 5. When first constructed,

the bandwidth of the filter was about one per cent too

narrow and the center frequency was about two per cent

low. Slight adjustment of the shunt stub lengths resulted

in a measured response that agrees very closely with the

theoretical characteristics. Both theoretical and experi-

mental curves are shown in Fig. 7. iNote especially the

measured VSWR vs. frequency which contains seven

ripples commensurate with the five ladder elements and

two unit elements incorporated in the design.

(a)

m3@JIjgmlE’,,,, ,,,4 4641 1291

(b)

(c)

070

(d)

(e)

o m 070

0 0

0 0

(f)

Fig. 4. Application of Kuroda’s Identities to obtain convenient ele-
ment values. (a) Initial prototype network. (b) Transformation
of 0.33 ohm distributed inductors and 1.27 mho distributed
capacitors. (c) Elimination of transformers. (d) Introduction of
redundant elements. (e) Application of Kuroda’s Identity. (f)
Final network after elimination of transformers.
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Fig. 5. Detailed view of an experimental filter that
realizes a seven-section filter (WZ= 5, n = 2).

50

TM

Fig. 6. Experimental seven-section filter (m = 5, n = ‘2).
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Fig. 7. Theoretical and experimental response characteristics
of a seven-section tilter (w= 5, n = 2).

VI. COMPARISON OF OPTIMUM Fmmm NETWORKS

The optimum response of a filter network with a given

number of nonredundant elements is obtained by use of

(8) and (13) or (14). Given k nonred.undant elements,

m and n can be chosen in any manner such that

m+n = k, and each choice will result in an optimum

multipole filter of order k. The response of each network

will be different, and the relation of one response to

another will change with filter bandwidth. In narrow-

band cases, practical considerations dictate the manner

in which m and n should be chosen whereas for wide-

band filters size considerations are of most importance.

Optimum multipole filter responses can be compared

by investigating the filtering properties of unit elements

in comparison with LC-type elements. The following

comparison will be carried out for the Chebyshev high-

pass prototype (band-pass filter) with the results for the

low-pass case being obtained by the high-pass to low-

pass transformation. Similar results apply for the

Butterworth case. For convenient calculation of stop-

band attenuation, (14) is written as:

IPI’

[

il. @ + Q>

Itl’
— = ez coshz m cosh–l — + n cosh–l —

Q <1 + Q’ 1
when Q < Q.. (22)

This form follows from (35) and (36) of the Appendix,

together with (1), using the identities cos–~ x =j Cosh-l x

and cosjx = cosh x. If n is zero, the function correspcmds

to the response of an L C ladder prototype and available

nomography [21 ] can be used to obtain the network

response. The general optimum multipole function

(22) can be adapted for use with these nornographs in

the following manner. Inspection of the functions

cosh–1 f2./fl and cosh–1 (<l +G?C2/ ~1 + f12) !Shows that

the ratio

Q.
cosh–l —

(23)

is always greater than one, for Q <%. Thus, in effect, it

takes more unit elements than LC elements to give a

specified attenuation slope. A plot of R vs. Q for several

f2C values is given in Fig. 8. For increasing 0,, ancl for

(!2./2) < fl < Clc, the ratio approaches unity. This indi-

cates that in the region immediately beyond cutoff for

narrow to moderate bandwidth filters, a unit element

gives almost the same attenuation characteristic as a

stub-type element. However, as the filter bandwidth in-
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creases, the unit element becomes less effective and

more u.e.’s must be used to obtain the same attenuation

as that of an LC element. The graph of Fig. 8 can be

used to obtain a comparison of different m and n choices

by letting

IP[2

[

$2.

~ 1=e’cosh2 m’ cosh–l —
Q

(24)

and using the referenced nomography, where

In practice, one estimates an average value of R from

Fig. 8, obtains m’ from (25), and finds the approximate

network response from the appropriate nomograph in

Kawakami [21]. A more accurate approximation can be

obtained by using a new value of R for each O/Cl, value

investigated.

As an example consider the number of nonredundant

elements k = m + n = 7. Several choices of m and n are

listed in Table IV along with an average m’ for both a

narrow-band and wide-band filter. For the narrow-band

case, R is so close to unity that all forms give almost the

same response. Thus, the choice of m and n is dictated

by the practicality of a given network form. Stub net-

work forms usually become unrealizable for narrow

bandwidths, and coupled line structures, normally

having a high value for n, are most practical. For exam-

ple, the familiar parallel coupled fiIter employs m = 1

and n = k — 1, and is very practical to construct for

narrow bandwidths.

For the wide-band case, the responses differ substan-

tially for different choices of m and n and the networks

containing more LC-type elements are observed to be

superior. Referring to Table IV, the m = 3 and n = 4 case

has a response corresponding to approximately 5.6 LC-

type elements while the m = O, and n = 7 case provides

a characteristic similar to that of 4.5 LC elements.

These approximations are only estimates for (fl/flC> 0.6.

When O/Q= is less than 0.6, R becomes larger, resulting

in a more degraded performance for those filters con-

taining unit elements. However, most practical applica-

tions of wide-band microwave filters require steep skirt

characteristics in which the behavior near cutoff is of

greatest importance, and the above method of estima-

tion is sufficient. The exact attenuation curve can be

obtained from (8) and (22), if desired.

For wide-band filters, most choices of m and n result

in prototypes that can be more easily realized with stub-

type networks than with coupled line structures. The

designer has the freedom of choosing m and n to meet

specific size and performance requirements. Some unit

elements are usually required, since only a limited num-

ber of stubs can be placed at a single junction. Thus,

s w,)

20’-*
15- -

fze= 127, (107 B”)

10 I
05 0,6 07 08 09 10

Q

F

Fig. 8. Plot of R vs. fl/Qc. Compar}on of unit element and stub-type
element attenuation properties for high-pass prototypes.

TABLE IV

PARAMETERS FOR COMPARISON OF DIFFERENT OPTIMUM
MULTIPOLE FILTERS WITH k.= m +Z = 7

the m =7, and n = O filter has the best response for all

cases listed in Table IV, but a practical network would

require the introduction of at least three redundant unit

elements. The use of m = 7 and n = 3 would result in an

improved filter by allowing the unit elements to contrib-

ute to the response. In the design example, a choice of

m = 5 and n = 2 resulted in a response which is but

slightly degraded from that of the case of m = 7, n = O in

a structure only two thirds as long.

To obtain the best response from a filter of minimum

size, the designer should try to incorporate as many L C

elements as is practical. For wide-band designs the use

of a high n/m ratio leads to a large network with a rela-

tively poor response and should be avoided. In fact, in

many cases, a low value of k with a low n/m ratio pro-

vides approximately the same attenuation as a high k

value with a high n/m ratio. As an example, the re-

sponse characteristic of a conventional filter constructed

of shunt-shorted stubs placed a quarter wavelength

apart is compared in Fig. 9 with the characteristic of

the design example of Section V. The all-shunt-stub

network form was designed using m = 1 and n =8, and

is four times longer than the m = 5 and n = 2 case, the

latter of which exhibits a better response.

Redundant filter elements often must be incorporated

to obtain practical element values. The redundancy can
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0 05 10 15

Fix. 9. Comparison of filter characteristics that demonstrates the
- size advan~age obtained by using a low n/m ratio for wide-band

designs.

either be added in the LC part of the network as in the

design example, or in the unit element section [4], [12].

Redundant unit elements add length to the filter and

thus it is more desirable to add the redundancy into the

L C part of the network if possible. In wide-band designs

it is usually most convenient to obtain the optimum

multipole network and add redundant elements with the

aid of Kuroda’s Identities. For narrow-band designs,

where redundancy is often high, it is more convenient

to introduce redundant elements through the synthesis

procedures

20

width as a parameter. Comparisons of this type are

useful in determining an optimum network form of

minimum size. Use of the low-pass to high-pass trans-

formation permits the band-pass results described to be

applied to band-stop filters.

The procedures presented are also applicable to the

design of certain types of waveguide filters, for band-

widths of 20 per cent or less. These include those filter

forms in which the response of the waveguid’e elements

closely approximates that of TEM mode stub-type ele-

ments.

The basic approximating functions developed can

also be used to design multiplexing filter networks by

choosing the functions to represent squared magnitudes

of the transfer admittances ( I YIZ 12, or transfer im-

pedances (I ZIZ 12, and properly positioning the .3-dB

cutoff frequencies [11 ]. Synthesis procedures applicable

to obtaining a practical realization can be fcmnd in the

literature [11], [13]- [15].

To verify the optimum multipole theory, a seven-

section band-pass filter of 3 to 1 bandwidth was de-

signed and constructed. The experimental results fol-

lowed very closely those predicted by the theory.

VI 1. CONCLUSIONS

The synthesis and design of a broad class of TEM

mode filters has been presented in a three-step pro-

cedure. General transmission response functions were

developed that give the “best” respo,nse (in a Butter-

worth or Chebyshev sense) for a given number of quar-

ter-wave elements. A synthesis and design procedure

was described that allows the realization of practical

distributed networks in the form of quarter-wave lines.

Direct application of the methods presented permits

the exact design of most conventional TEM mode filter

forms. By utilizing every quarter-wave element to aug-

ment the filter response, an optimum multipole filter

can be obtained. A comparison of the filtering properties

of stub-type elements with unit elements showed the

stub types to be always superior and increasingly better

for wider bandwidths. The unit element was shown to

give effective band-pass filtering for bandwidths up to

two octaves. The method of comparison presented can

be used to determine the response characteristics of

different optimum multipole network forms using band-

s As described, for example, in Wenzel [4], pp 109–1 10.

VIII. APPENDIX

The equal ripple approximation to the ideal filter

characteristic will be obtained by direct development

from the definition of a constant amplitude rational

fraction all-pass function on the complex W- plane.g

A unit amplitude all-pass transfer function on the

imaginary axis in the complex W-plane is deiined by:

W<*W
~j2’$i(TV) = (26)

W,–w’

The root parameter Wi must be real in order that (26)

be a rational unit amplitude function describing the

transfer characteristic of a realizable filter. However, if

a product of such functions is taken, the resulting unit

amplitude function will be rational if the W~’s are

either real or occur in conjugate pairs. Thus a rational

unit amplitude transfer function on the imaginary axis

in W can be represented by the product,

g A similar approach has been used by Bennett [22], [23] for ap-
plication to RC lumped element networks and leads to the desired
equal ripple approximation via relatively simple logic. The rat ional
fraction functions used by Sharpe [24] and Helman [25], [26] for
lumped RC networks are also applicable but no justification is given
for their choice. Kohler and Carlin [27] go through a Iengthy justifi-
cation after having chosen the proper approximation for the dis-
tributed optimum low-pass filter. Perhaps the earliest discovery of
the proper equal ripple approximating function for the distributed
optimum filter was recorded in a personal letter from Prof. Kuroda
to Prof. Ozaki in 1954, reference to which was found in unpublished
notes written by Prof. Fujisawa while a visiting lecturer at the IJni-
versity of Michigan in 1963.
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The high-pass equal ripple function F~(.S) =~(W) is

obtained by substituting transformation (3 1) into (30)

to give:

rI(<s*’ – s.’ + ds’ – SC’)+ m(ds,’ – s,’ – ds’ – s.’)
FH(S)= (32)

211<st’ – S2

where the symbol II indicates the product taken over The roots S, in (32) may be chosen arbitrarily as long

all roots W~ which must occur in conjugate pairs if not as they occur in conjugate pairs if not real. It is noted

real. The magnitude of e~z@(WJis unity on the imaginary that the real roots S,= O and S,= – 1 permit the square

axis in W’ and the phase variation is monotonic. Sim- of FH in (32) to have the same pole locations as those of

ilarly, the positive square root of (27) is of constant lP]’/l~12 in (9). If the pole locations of FH are now

unit amplitude, restricted such that m poles occur at S~ = O, correspond-

rI<wi + w
ing to m high-pass LC ladder elements, and n poles

~i~ = ~~J@i = ~~~~i = (28) occur at S~ = – 1, corresponding to n. u.e.’s, then (32)

II<w, – w for the optimum multipole equal ripple filter becomes

———— ———
(jsc+ %“s’– S,’)qlll – s.’ + <s’ – s,’)” + (jsc – {s’ – Sc’)”(v’l – s.’ – v’s’ – s,’)” . (33)

————

FIT(S) =
2(js)~(dl – s’)’

with the symbol Z indicating summation on all angles

q5~ associated with roots W,. A real function ~(W) is

defined by

j(W) = +(e’* + e-id) = cos @ = cos 2+,. (29)

This function has a maximum amplitude of unity and

is the cosine of a monotonic varying angle @ along the

imaginary axis in W. Using (28) in (29),

II(w, + w) + Ir(wi – w)
f(w) =

2111/wi’ – w’
(30)

This algebraic fraction, representing a unit amplitude

optimum equal ripple approximation, can be expressed

alternately in Chebyshev polynomials by noting that

F(S) =~(W) = cos @ = cos Z@~ in (29). Thus the ith

component phase angle ~i is obtained by considering

only the ith term from each of the products in (32) for

FH:

Cos~, = dst’ – .s2
4s,2 – S2 “

(34)

which is equal ripple along the entire imaginary axis in
The high-pass LC ladder element phase angle ~Lc is

the W-plane. established by setting S~ = O; similarly, the u.e. phase

angle ~. e. is established by setting S,= — 1, yielding

A. High Pass

Equal ripple variation may be restricted to the high-
js. tan 0.

cos~Lc=~=—;
pass range on the imaginary S-plane axis S> SC by $S tan O

applying to (30) the transformation:
dl – s.’ Cos (3

w = <1 – S’js.’; w% = <1 – st’/s,’. (31)
Cos @.. e.= — —

41–s’=cOse. ”
(35)

This transform maps that portion of the positive
From (29) the high-pass approximating function FH

imaginary S-plane axis for which S > S, onto the entire

positive imaginary W-plane axis, as shown in Fig. 10.
may be written alternately as

The remainder of the positive imaginary S-plane axis
F~ = cOS (t@LC + @u.e..)

S <S, maps onto the positive real axis in the W-plane

between unity and zero.

‘H= Tm(%)Tn(%)

& L

-Um(%)un(z) ‘3’)

I I where Tfi(x) = cos (w arc cos x) and Un(x) = sin (m arc

Fig. 10. Mapping of the positive imaginary S-plane axis onto the cos x) are un-normalized mth degree Chebyshev poly -

It’-plane by the high-pass transformation Iv= v’1 –S2/S.’. nominals of the first and second kinds, respectively [19].
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B. Low Pass

A low-pass approximating function FL can be ob-

tained from the high-pass function FH by replacing

each frequency parameter by its inverse. Thus, (35),

(33), and (36) become now, for the low-pass case,

s tan 0 s</1 – .7.2

Quarfer-Wave

sin e
cosC#lLc= —=-. Cos Ipu,e. =

s. tan 0. ‘ Sodn = -sin Oc

327TEM Filfers

(37)

FL = (s+ V/S’ – Sc’)m(sdl – s.’+ VS2 – s.’)” + (s – ds’ – SC2)”(S<1 – s.’ – tis’ – s.’)” ~,38,
—

2(s,)~+”(dl – s’)’
,.-,

FL = COS (?’@LC + @’u,,.)

(39)

The functions FH and FL exhibit equal ripple charac-

teristics and monotonic phase variation in their respec-

tive pass bands and have pole locations corresponding

to the R-matrix multiplication of unit elements and LC

ladder elements. The unit amplitude equal ripple func-

tions, FH of (33) or (36) and FL of (38) or (39), are each

multiplied by an arbitrary voltage ripple factor e and

then squared in order to form the Chebyshev approxi-

mation to the power reflection-to-transmission ratio.

IP12
H-P : —

I tl’= ‘2FH2

L-P :
IP12

~
= e2FL2. (40)
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