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General Theory and Design of Optimum
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Abstract—The exact synthesis and design of a broad class of
quarter-wave TEM mode filters is presented in a three-step proce-
dure. The theory is applicable to all microwave filter forms consisting
entirely of a cascade of quarter-wave lines, quarter-wave stubs, and
coupled quarter-wave lines. The exact design of many conventional
filter forms that heretofore could only be designed using approximate
methods is possible using the techniques and functions described.
General approximating functions that give the “best” transmission
response in a Butterworth or Chebyshev sense are derived. The use
of a maximum number of available singularities to augment the
filter skirt response leads to a minimum element filter termed
“optimum multipole.” An optimum multipole design insures the
“best” possible response for the minimum element and all cor-
responding redundant element networks. The designer has the
freedom of introducing sufficient redundancy to obtain a design that
is practical to construct, but which still realizes the optimum re-
sponse. Judicious choice of network form often results in improved
performance and reduced size in comparison with many conventional
filter forms. Design procedures are presented that allow the practical
realization of distributed filter networks in the form of quarter-wave
lines. A design example and experimental results are given to con-
firm the theory.

I. INTRODUCTION

REVIOUS TEM distributed filter designs have
Pmade use of either approximate image parameter

techniques [1]-[3] or exact modern network
techniques [4]-[12]. The modern network approach
allows the realization of prescribed transfer character-
istics at all frequencies and is, therefore, preferred,
especially for wide-band-pass or band-stop responses of
30 per cent or greater. However, in the exact design
approach, quarter-wave unit elements often serve only
to spatially separate adjacent distributed stub-type ele-
ments so their fields do not interact. In most designs of
this type, no use has been made of the unit elements to
help in achieving a desired maximally flat or equal ripple
response. Other microwave filter forms, previously de-
signed by approximate methods, depend almost entirely
on the unit element “spacers” to obtain a useful re-
sponse. A method was sought for obtaining an exact
procedure which would permit an optimum design in
each of these important cases.

This paper presents the theory and design of a broad
class of TEM filters employing commensurate length
lines. The theory includes all microwave filter forms con-
sisting entirely of a cascade of quarter-wave lines,
quarter-wave stubs, and coupled quarter-wave lines. A
filter form termed “optimum multipole” is obtained
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when each line length element characterized in the
theory is used to create a complex plane pole to augment
the filter skirt response. Most conventional network
forms are obtained from the optimum multipole form by
introducing redundant elements.

Throughout the paper a heuristic understanding is
stressed at the possible expense of mathematical rigor.
An outline is given for the steps employed in the syn-
thesis of distributed TEM filters; however, many de-
tails of modern network synthesis are beyond the scope
of this paper and may be reviewed in existing publi-
cations [13]-[15].

II. TEM DISTRIBUTED NETWORKS

The application of modern network theory to the
design of microwave TEM distributed networks is based
upon a complex plane transformation demonstrated by
Richards [16] in 1948. He showed that distributed net-
works, composed of commensurate lengths of trans-
mission line and lumped resistors, could be treated in
analysis or synthesis as lumped L-C-R networks by
using the complex frequency variable
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where Q is real and wg is the radian frequency for which
the transmission lines are a quarter wavelength. The
tangent mapping function converts the range of fre-
quencies —wo<w<wp into the range — o << « and
the mapping is repetitious in increments of 2w, For
example, the high-pass response of a lumped element
filter in the frequency variable € maps into a band-pass
response in w about the quarter-wave frequency w, for
the corresponding distributed filter, as shown in Fig. 1.
The one-port impedance of a short-circuited trans-

mission line
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Fig. 1. Mapping properties of the transformation Q=tan mw/2w,.

(a) Prototype lumped element high-pass. (b) Corresponding dis-
tributed element band-pass.
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corresponds in the mapping transformation to the im-
pedance of a lumped inductor, Z=jwlL. Similarly, the
admittance of an open-circuit line

. Tw
YV = 7 tan *2'—> Yoc

Wy,

corresponds to the admittance of a lumped capacitor
Y =jwC. The distributed characteristic values of Zo, and
Yo, correspond, respectively, to L and C for lumped ele-
ments. Throughout the remainder of this paper, the
symbols L (inductor) and C (capacitor) will be used to
designate the characteristic impedance or admittance of
a short-circuited or open-circuited quarter-wave line,
respectively.

The application of exact synthesis methods to micro-
wave networks using the transformation of (1) is re-
viewed in detail by Wenzel [4]. The “unit element”
(u.e.), a quarter-wave two-port transmission line of
characteristic impedance Z is introduced as a network
element which has no identical counterpart in lumped
element theory. Kuroda’s Identities [4], [5], [17] are
also introduced to enable the interchange of cascaded
u.e.’s with series or shunt distributed L’s or (’s.

1I1. Tue OpTiMuM MULTIPOLE FILTER

An optimum multipole filter is defined as a non-
redundant two-port network constructed of elements
whose values have been chosen to yield the best approxi-
mation to a rectangular transfer response in a Butter-
worth or Chebyshev sense. A nonredundant network is
one in which each element contributes a complex plane
pole that can be used to augment the filter skirt re-
sponse. Every nonredundant combination of quarter-
wave stubs (L C elements) and unit elements can be used
to obtain an optimum multipole filter. All filters em-
ploying only quarter-wave lines can be reduced to non-
redundant form by suitable application of Kuroda's
Identities and/or series parallel reduction. It is obvious
that the introduction of redundant elements cannot lead
to a network form whose response is better than that of
the corresponding optimum multipole filter.

As a specific example of the application of the previous
statements to a network containing unit elements, con-
sider the familiar parallel coupled band-pass filter. The
conventional form consists of a cascade of series capaci-
tors and unit elements. A filter with K series capacitors
and N unit elements can be reduced to a nonredundant
form having one series capacitor and N unit elements
[4]. (This assumes that none of the u.e.’s are redun-
dant.) Assignment of element values in accordance with
the theory to be described gives an optimum multipole
design and insures the best possible response for the
minimum element network and for any redundant ele-
ment network derived therefrom. The designer now has
the freedom of introducing just enough redundancy to
obtain a filter that is practical to construct but which
realizes the optimum multipole response. In fact, a
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practical redundant network can often be obtained
directly from the synthesis procedure, especially if a
specific network realization is desired.}

IV. DEsigN or OpTiMUM DISTRIBUTED FILTERS

The exact design of microwave TEM distributed
filters based on modern network theory involves three
distinct steps:

1) Determination of the polynomial form of the ratio
of reflection to transmission coefficient for a com-
posite two-port filter containing both quarter-
wave short or open-circuited stubs (LC’s) and
quarter-wave impedance transforming two-ports
(u.e.’s).

2) Development of the approximating function,
usually chosen as maximally flat (Butterworth) or
equal ripple (Chebyshev), used to approximate a
rectangular low-pass or high-pass prototype power
transmission characteristic.

3) Synthesis and physical realization of a practical
network in the form of distributed quarter-wave
lines.

A. Step 1—Polynomial Ratio of Reflected
to Transmitted Power

The polynomial ratio of reflection to transmission co-
efficient for a cascade of unit elements and prototype
LC distributed elements can be obtained by multipli-
cation of wave cascading matrices R [18] defined by

l:bl] B [7’11 7’12:| I:az:l
a Fo1 Y22 by
1 -As S11 ay
- [
satl—ss2 1 b,

In this equation a1, by, are the left-hand port incident
and reflected wave amplitudes, respectively, and as, b2
are those of the right-hand port. The 7;;'s are the R-
matrix elements, the s;’s are the scattering S-matrix ele-
ments, and A, =s$11520—512521 is the scattering matrix
determinant. The individual R-matrices of cascaded
two-ports can be multiplied to give the overall R-matrix

of the cascade.
The constant matrix 4 with transpose 4, is defined by

1i7r—-1 -1
A=~[ } (3)
2 1 1

and appears in the R-matrix for each of the distributed
L’s, C’s and u.e.’s of Table I.

1) High-pass prototype: The high-pass prototype re-
sponse, which, as shown in Fig. 1, gives rise to a dis-
tributed filter band-pass response, will be considered

1 See, for example, Wenzel [4], pp 109-110. The first synthesis
procedure described gives an optimum multipole network, while the
second yields a redundant form in which all unit elements were chosen
to have unity characterisic impedance. Depending on the element
values, one form may be more suitable than the other from a practical
viewpoint,
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TABLE I

Wave CAscADE MATRIX, R, FOR DisTRIBUTED LC LLADDER AND
Unit ELeMENTS. THE CONSTANT MATRIX, A, 15 DEFINED
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first. Such a filter may be comprised of distributed series
C’s, shunt L’s, u.e.’s, and a unit terminating load. The
C’s, L's, and u.e.’s may occur in random sequence; how-
ever, in order to be a nonredundant filter, no two C’s nor
two L's may occur adjacent to each other even if sepa-
rated by one or more u.e.’s.? It is noted in Table I that
each of the lossless high-pass elements (C’s, L's, u.e.’s)
has an R-matrix which comprises a scalar denominator
factor multiplied by a matrix which is linear in the fre-
quency parameter S. The scalar denominator factor of
each R-matrix contains S to the first order. Thus, an
optimum high-pass filter, having a mixed cascade of m
high-pass ladder elements and » unit elements termi-
nated in a unit load, will have an overall R-matrix of
the form

1\™ 1 »
R = e — Bm n S 4
G G o
where Bni.(S) is an (m—+n)th degree 2 X2 matrix poly-
nomial in S,

(5)

Born(S) = [bn(S) blg(S):lm+n-

801(S)  022(:S)

The R-matrix element of interest in (2) is ria=s511/52
representing the ratio of input reflected wave to that
transmitted into the load.

1\™ 1 n
rig = $11/$91 = <§> (ﬁ) bl2m+n(S)- (6)

The overall cascade input reflection coefficient p=s;;
and the transmission coefficient into the unit load
t=s91 are now renamed for ease in recognition. Total
power into the filter is conserved, thus

o2+ |2 =1 Ul

which can be rearranged to show the dependence of the
power transmission response on r1s=p/t, i.e.,

2 Otherwise the elements may be combined, reducing the total
number, by simple parallel or series combinations possibly in con-
junction with use of one of Kuroda's Identities,
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Equation (6) for #15(S), when multiplied by 71:(—S) to
give f1’12|2, results in a ratio of (m~+n)th degree poly-
nomials in (—38%). The general form of the resultant
numerator polynomial, which has real coefficients, will
not change if each term is multiplied by a real constant
involving S.2=(j tan 6,)?, where 0. =ww,/2w and w, is
designated to be the filter cutoff frequency. Then

PNE = ME
e N =52/ \1 -5/ "\ s
or from (1),
l 0 |2 tan 6,\*" / cos 6 \** tan? 6
— ( P ——)  (10)
‘ t|2 tané cos 6, tan? 6,
where Py, is an (m-+n)th degree polynomial in —S2/
— S
2) Low-pass prototype: The individual R-matrices of
an optimum low-pass (L-P) filter having m low-pass
ladder elements, # unit elements, and a unit termination,
may be multiplied to obtain the overall R-matrix of the
cascade. The low-pass optimum filter may be comprised
of series L’s, shunt C’s and u.e.’s in random sequence;
however, to be nonredundant, L’s must be adjacent to
C’s if not separated by a u.e., or L’s must be adjacent
to each other (and likewise C’s) if separated by a u.e.
By applying a procedure similar to that used above

for the high-pass filter, the low-pass prototype response
ratio of reflected to transmitted power is given by:

lol>  /=S2\"/=52(1 — S —S.2
T (—Si) <—S£(1 - 52)> Ot <TS—Z> (1)
or by

\pl2 tan 8 \*" /sin 6\ 2" tan? @,

| 2] - (tan 90> <sin 00> Orte <tan2 0> (12)

where Qnin is an (m-+n)th degree polynomial in

(=S82/—35%).

(8)

B. Step 2—Approximating Functions

The ideal microwave prototype filter has a transmis-
sion power-amplitude response, (8), which is rectangu-
lar; i.e., as frequency increases through cutoff, it is de-
sired that transmission fth change from zero to unity
for a high-pass prototype and from unity to zero for a
low-pass prototype, as shown in Fig. 2.

1t]? 112

1 1 , I
2 e R 2

(2) (b)

Fig. 2. Ideal rectangular transmission amplitude power
response. (a) L-P prototpye. (b) H-P prototype.
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This rectangular response cannot be realized exactly
and, therefore, must be approximated in some manner.
The two most common approximations, which are con-
sidered here for application to the optimum multipole
filter are the maximally flat (Butterworth) and the equal
ripple (Chebyshev).

1) Butterworth: The maximally flat approximation for
the high-pass prototype results ffom choosing coeffi-
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response is developed (see Appendix) from a constant
amplitude rational {raction all-pass function.

This same development, with each frequency param-
eter replaced by its inverse, gives the proper coefficients
of Qumin (11) for equal ripple pass band response of the
low-pass prototype.

The Chebyshev approximating functions are given

by:
EG=)
S V1 —.52

H-P = eQ‘ T,,,<
[1] N S
B tan 6.
=& Thn ) T,
_ tan @
V]
| 2]2
B tan @ sin
= e | Tn < T | —
L tan 6, sin @,

cients of the (m+4n)th degree polynomial P, . (9) in
a manner such that all but the highest order derivative
of ’p’z/lt’z, taken with respect to S—!, are zero at
S71=0 (§= »). This criterion requires that all co-
efficients in P,.. be zero except the constant term. A
constant term of unity defines the cutoff frequency
Q,=.S,/7 to occur at half power (—3 dB) as verified by
inspection of (8) and (9).

Similarly, all coefficients of Q4. (11) are set equal
to zero, except the constant coefficient of unity, to ob-
tain the low-pass maximally flat approximation. In the
low-pass case, all but the highest order derivative of
lp! 2/] t] 2, taken with respect to .S, are zero at S=0.

The Butterworth approximating functions are then

given by:
e L2l (S (VIS
ST \s) Ui
_ (tan 06>2m(cos 0)2”
- tan @ cos 8,
2 2m 1T _—GC2\2n
L el <£> <*—*S‘/L§_:>
L] \S/ \Sv/1 - 82

tan 8 \?" /sin 6\?2"

(on) Ge) - o
tan 8, sin 6,

Note that the low-pass approximation can be obtained

directly from the high-pass by replacing each frequency

parameter (i.e., S, S;) by its inverse
(S-1, 8,71, and vice versa.

2) Chebyshey: An equal ripple approximation for the
high-pass prototype results from choosing coefficients of
the polynomial, P4, (9), in such a manner that the
pass band response ripples between the values of unity
and (14¢€)~% The polynomial form which exhibits this

respective

cos 8 tan 6, cos 8\ 12
A Un
cos 0, tané cos 0,

[ (5 () ()]
- S Sev/1 — 52 Se SA/1 — 82

sin 6

(14

tan @
) - o (irs) oo
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where

Il

Tn(x) = cos (marccosx) and U,(x) = sin (m arc cos x)

sin 8,

are unnormalized mth degree Chebyshev polynomials of
the first and second kinds, respectively [19].

C. Step 3—Network Synthesis

The final step in obtaining an optimum flter is solving
the realization problem; i.e., it is desired to synthesize
a distributed network with a physical response corre-
sponding to the admissible approximating function of
(13) or (14). The general form of these functions was
obtained by considering a cascade of unit elements and
distributed L’s and (’s. If the input impedance of this
cascade is determined from the specified power function,
Richards’ Theorem?® can be applied to determine the
unit element values, and pole removing techniques
[13]-]15] can be used to determine the LC values. The
power reflection coefficient [p! 21— {t[ 2=pp where the
bar denotes complex conjugate, can be obtained f{rom
the approximating function for fp]2/|t\2. Because the
network is to be physically realizable, the reflection co-
efficient p must have no poles in the right half plane.
Since the network functions under consideration do not
have j-axis poles, the desired reflection coefficient can
be determined from the squared approximating function
Ip\ 2 by finding roots of the numerator and denominator
polynomials and associating the left half-plane poles
with p and the right half-plane poles with p. The only
restriction on the zeros of p is that they be chosen in
conjugate pairs such that the numerator of pp is the nu-
merator of |p|2.* For many practical microwave filters,
all zeros lie on the imaginary axis and no alternate
choices are possible.

3 For a statement and discussion of Richard’s Theorem see [4], [5],
[6], [8], and [16].

¢+ For a discussion of the effects of different zero distributions,

see Weinberg [14], pp 592-593.
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Once a reflection coefficient has been obtained by the
above procedure, the transformation

140

Zi =
n 1—p

(15)

yields the input impedance of one possible network and
the opposite choice for the algebraic sign of p gives the
input impedance of the dual network. The choice of
either network is dictated by the physical configuration
of the desired realization and the element values ob-
tained from the synthesis procedure.

Many variations in network form, each having a mini-
mum number of elements, are possible. Specifically,
there exists a number of configurations equal to the
number of unique networks that can be obtained by
applying Kuroda’s Identities. Furthermore, redundancy
(for example, replacing a series inductor by two inductors
or adding u.e.’s whose impedance is the same as that of
the load) allows the possibility of additional network
forms. Any one of the minimum element networks is a
permissible mathematical solution; however, a practical
realization may require that various network forms be
investigated.

The schematic forms of two symmetric, doubly termi-
nated, optimum filters and their respective duals are
shown in Table II. The forms shown utilize the maxi-
mum number of elements that can usually be obtained
in a practical network.

In some specific cases, series elements can be con-
tained within shunt stubs, and multiple stubs can be
contained within u.e.’s, thereby increasing filter com-
plexity for a given number of unit elements. In general,
this can be accomplished only in relatively wide-band
designs and at lower microwave frequencies where ele-
ment value restrictions and complicated junctions do
not present serious limitations. Symmetry in the as-
sumed forms requires equal terminating impedances;
however, for the band-pass case, Kuroda’s Identities
often can be applied to provide for unequal termina-
tions. In general, the filters need not be symmetric and
all combinations of m and #» may be used. The networks
shown in Table II can be used as a guide in applying
Richards’ Theorem and pole removing techniques to
Z;n, together with application of Kuroda’s Identities,
to obtain equivalent forms. Because of the assumed
symmetry, only part of each network need be synthe-
sized. For example, in the symmetrical case of five
ladder elements (m=35) and two unit elements (rn=2),
the network is synthesized by applying Richards’
Theorem once to obtain the unit element value followed
by three pole removals.

It is evident that an optimum filter can contain many
sections in a relatively short overall length. In some
applications, use of the full number of sections possible
in a given length may not be necessary or practical. For
example, networks having two u.e.’s can contain up to
five LC elements (not including the possibility of series
stubs within shunt elements and multiple stubs in
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TABLE 1I

ExaMpPLESs oF Pracricarl OpriMuM MULTIPOLE FILTER
NETWORKS AND THEIR RESPECTIVE DUALS

m|o» HIGH PSS (BAND PASS) LOW PASS {BAND STOP)

z
Y Y.
! ’ ! '

{2} @
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TABLE III

SoMe CoMmoN FILTER ForMs CONTAINING FEWER THAN MAXiMUM
ELEMENTS OR REDUNDANT ELEMENTS THAT CAN BE EXACTLY
DESIGNED TO GIVE AN OPTIMUM MULTIPOLE RESPONSE
BY SUITABLE CHOICE OF 7 AND 7

. (a)
-2 2 B ST TS )

NUMBER

OFue's

COMMON REACIZATION FORM ALL SHUNT STUB FILTER OR
PARALLEL COUPLED LINES WITH SHORT CIRCUITED ENDS

ﬂ ....... :T:B ‘

COMMON REALIZATION FORK PARALLEL COUPLED LINES
WITH OPEN-CIRCUITED ENDS

-5

COMMON REALIZATION FORK QUARTER WAVE SPACED
SHUNT OPEN CIRCUITED STUBS EQUIVALENT TO FILTER
FORM (d) BY APPLYING KURODAS IDERTITY

)
‘ 'l.l ‘‘‘‘‘‘ :EB ‘

COMMON REALIZATION FORM QUARTER WAVE SPACED
SERIES COAX}AL STUBS R PARALLEL COUPLED BARS

®)

NUMBER
OFve's

NUMBER | NUMBER
OFCs | OFues

NUMBER | NUMBER
OF L' | OFue's

u.e.’s). The use of fewer LC elements or redundancy
may in some cases simplify the construction of the filter
and may also ease the element value requirements.
Several common filter forms that contain fewer than a
maximum number of elements, or redundant elements,
are listed in Table III. Networks of this type with opti-
mum response can be exactly synthesized by using the
appropriate m and # in (13) or (14).

Bandwidth scaling of optimum filter network element
values is not as easily accomplished as it is in networks
incorporating only ladder elements. For networks that
have a ladder prototype, a set of normalized element
values can be determined and bandwidth renormaliza-
tion may be accomplished by multiplying these values
by a constant. Variation of the bandwidth determining
constant (.5;) for the general optimum filter changes the
element values in a manner which may not permit a
simple calculation to yield the new values. A digital
computer, however, can be used to obtain tables of cle-
ment values for a wide range of bandwidths.

The manner in which prototype element values are
converted to physical dimensions and a general discus-
sion of equivalent network forms can be found in the
literature [4], [5], [6], [9], [12].
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V. EXPERIMENTAL EVALUATION

A seven-section equal ripple band-pass filter of 3 to 1 bandwidth® will be considered in detail as a design example.
The filter, consisting of two unit elements and five LC elements, will be designed to have 0.1 dB ripple in the pass
band. The normalized cutoff frequency for a 3 to 1 band is S,=j4. From (8) and (14) the transmission function
is given by:

1
lt12= — — - (16)

1+ 0.0233 [T(S”>T( _1—S°2> U <S°)U< ) ”2>]2
RU/ZAN 5 S 2 Vio s 5 S 2 V= s

Substitution of S,=j, simplification of the resultant ratio of polynomials, and use of the identity ]p[ 2+ ] t[ t=1
gives:

[0.985% 4 8.1551 + 17.6452 + 10.78]2
—51 4 2.965"2 + 14.96510 + 100.965% + 308.695° - 487.065% + 380.465% + 116.23

|p|? = (17)

Roots of the denominator are obtained with the use of a computer and the left-hand plane poles are associated
with p. Since the numerator of lp[ 2 is a perfect square, the numerator of p is obtainable by inspection:

0.985¢ + 8.155% + 17.645? -+ 10.78

(18)

P S7 4 6.1685% + 17.475% 4+ 32.365* + 39.138% + 37.575% 4 20.735 + 10.78 '
Use of the linear transformation Zi,= (1+4+p)/(1 —p) yields
S7 4+ 5.185% -} 17.475% 4+ 24.21.5% 4 39.135% -} 19.9352 + 20.73S (19)

N S7 4 7.135% 4 17,4755 4 40.51.5% + 39.135% 4 55.21.5% - 20.73S5 + 21.56 ‘

One possible network form is shown in Table II(a). Determination of element values begins with the removal
of a unit element by application of Richards’ Theorem to give Zy..=Zin(1) =0.63. The impedance of the re-
maining network after removal of the u.e. is:

SZin(1) — Zin(S)
SZ:a(S) — Zi(1)

Zinl(S) = Zin(l)

or

2.165) 1.8456 4+ 10.205°5 + 18.845* -+ 33.655% -+ 20.0852 + 20.985 20
T 46488 - 21,0055 + 64.835% + 82.375% + 128,055 + 60.525 + 62.96 -

after cancellation of the common S%?—1 factor.

Next, a shunt inductor of value L;-==0.33 is removed by dividing the numerator of ¥:,'(S)=1/Z:./(S) by its
denominator.® A series capacitor of value C=1.27 and a shunt inductor of value L,=0.26 are obtained from the
impedance of the remaining network,

2,5y = STAS H S0TESE+ S6.7IS? + 101425 + 60.525 + 62.96 an
" 139885 + 46.875% 4 102.765% + 77.158% + 80.258 '

% As with conventional Chebyshev-type characteristics, the bandwidth is measured between the outer ripple points.
¢ This step removes a simple pole of Yia at S=0 and is the same technique that is used to synthesize lumped element ladder networks
[13]-[15].
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in a similar manner. A diagram of the synthesis steps,
together with the completely synthesized network, is
shown in Fig. 3.

In order to obtain a network configuration that is
convenient to construct, the following Kuroda Identity
transformations are performed. Referring to Fig. 4, the
0.33 ohm distributed inductors and 1.27 mho distributed
capacitors are transformed to the outside of the unit ele-
ments. Because the network is symmetric, the trans-
formers can be moved to the center of the network and
eliminated as in Fig. 4(c) [4]. The network of Fig. 4(c)
contains a minimum number of elements and is still in
optimum multipole form.” However, the center inductor
value is low, requiring a 5.15 ohm shunt stub in a 50 ohm
terminated filter realization. Two parallel 10.3 ohm
stubs could be used, one on either side of the center line,
but these values are still low to realize easily. To obtain
more convenient center element values, redundant ele-
ments are introduced by splitting the center inductor
into three inductors. The three element values are
chosen such that application of Kuroda's Identity and
elimination of the resulting transformers gives element
values that do not differ greatly from the characteristic
impedance of the terminations. The final network is
shown in Fig. 4(f). The introduction of redundant ele-
ments in the manner described has yielded a network

7 This form can be obtained directly from (19) without the aid of
Kuroda's Identities by removing a shunt inductor, series capacitor,
unit element, and shunt inductor using the synthesis techniques

described.
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Fig. 3. Synthesis steps in seven-section filter design example. (a)
Unsynthesized network. (b) Removal of a unit element by use of
Richards” Theorem. (¢) Removal of a shunt stub by removing a
pole of Yi//(S) at S=0. (d) Removal of two more stubs in a
manner similar to (c). (e) Final network obtained by symmetry.
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with realizable element values, but has not resulted in
increasing the filter length. The final filter is not in
optimum multipole form, but it does realize the opti-
mum response for m =3 and n=2.

A trial filter was constructed based on the parameters
used in the design example. A ground plane spacing of
0.200 inch was chosen and center conductor rod dimen-
sions were obtained with the aid of standard graphs
[20]. The unit elements were made one-quarter wave-
length long at 2.175 Ge. Stub lengths were determined
experimentally by adjusting each to produce a zero of
transmission at 4.350 Gc by temporarily shortening all
other stubs. A line drawing of the entire filter is shown
in Fig. 5 and a photograph is shown in Fig. 6. To reduce
undesirable junction effects, the two outer junctions
were mitered as shown in Fig. 5. When first constructed,
the bandwidth of the filter was about one per cent too
narrow and the center frequency was about two per cent
low. Slight adjustment of the shunt stub lengths resulted
in a measured response that agrees very closely with the
theoretical characteristics. Both theoretical and experi-
mental curves are shown in Fig. 7. Note especially the
measured VSWR vs. frequency which contains seven
ripples commensurate with the five ladder elements and
two unit elements incorporated in the design.
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Fig. 4. Application of Kuroda’s Identities to obtain convenient ele-
ment values. (a) Initial prototype network. (b) Transformation
of 0.33 ohm distributed inductors and 1.27 mho distributed
capacitors. (c) Elimination of transformers. (d) Introduction of
redundant elements. (e) Application of Kuroda's Identity. (f)
Final network after elimination of transformers.
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Fig. 5. Detailed view of an experimental filter that
realizes a seven-section filter (m=35, n=2).
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Fig. 7. Theoretical and experimental response characteristics
of a seven-section filter (m =35, n=2).

VI. CompaRISON OF OPTIMUM FILTER NETWORKS

The optimum response of a filter network with a given
number of nonredundant elements is obtained by use of
(8) and (13) or (14). Given k nonredundant elements,
m and n can be chosen in any manner such that
m—+n=~F, and each choice will result in an optimum
multipole filter of order k. The response of each network
will be different, and the relation of one response to
another will change with filter bandwidth. In narrow-
band cases, practical considerations dictate the manner
in which m and # should be chosen whereas for wide-
band filters size considerations are of most importance.

Optimum multipole filter responses can be compared
by investigating the filtering properties of unit elements
in comparison with LC-type elements. The {ollowing
comparison will be carried out for the Chebyshev high-
pass prototype (band-pass filter) with the results for the
low-pass case being obtained by the high-pass to low-
pass transformation. Similar results apply for the
Butterworth case. For convenient calculation of stop-
band attenuation, (14) is written as:

pl? Q, V14 Q2
t I = ¢ cosh? [m cosh™ — 4 # cosh™! :]
|22 Q Vit @
when @ < Q.. (22)

This form follows from (35) and (36) of the Appendix,
together with (1), using the identities cos™ x =34 cosh™ x
and cos jx =cosh x. If # is zero, the function corresponds
to the response of an LC ladder prototype and available
nomographs [21] can be used to obtain the network
response. The general optimum multipole function
(22) can be adapted for use with these nomographs in
the following manner. Inspection of the functions
cosh™ ©,/Q and cosh™! (v/14+Q.2/+/1+?) shows that
the ratio

cosh=! —
Q

NE (23)

cosh —
VIt @

is always greater than one, for Q <(,. Thus, in effect, it
takes more unit elements than LC elements to give a
specified attenuation slope. A plot of R vs. @ for several
Q. values is given in Fig. 8. For increasing €., and for
(Q,/2) <Q <, the ratio approaches unity. This indi-
cates that in the region immediately beyond cutoff for
narrow to moderate bandwidth filters, a unit element
gives almost the same attenuation characteristic as a
stub-type element. However, as the filter bandwidth in-
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creases, the unit element becomes less effective and
more u.e.'s must be used to obtain the same attenuation
as that of an LC element. The graph of Fig. 8 can be
used to obtain a comparison of different 7 and % choices
by letting

Iz

2
= €2 cosh? I:m' cosh™! ———} (24)
2] Q
and using the referenced nomographs, where
f= ot (25)
m =m —_
R

In practice, one estimates an average value of R from
Fig. 8, obtains w' from (25), and finds the approximate
network response from the appropriate nomograph in
Kawakami [21]. A more accurate approximation can be
obtained by using a new value of R for each Q/Q, value
investigated.

As an example consider the number of nonredundant
elements k=m-+n="7. Several choices of m and # are
listed in Table IV along with an average m’ for both a
narrow-band and wide-band filter. For the narrow-band
case, R is so close to unity that all forms give almost the
same response. Thus, the choice of m and # is dictated
by the practicality of a given network form. Stub net-
work forms usually become unrealizable for narrow
bandwidths, and coupled line structures, normally
having a high value for #, are most practical. For exam-
ple, the familiar parallel coupled filter employs m=1
and #=Fk—1, and is very practical to construct for
narrow bandwidths.

For the wide-band case, the responses differ substan-
tially for different choices of » and # and the networks
containing more LC-type elements are observed to be
superior. Referring to Table IV, the m =3 and # =4 case
has a response corresponding to approximately 5.6 LC-
type elements while the m =0, and =7 case provides
a characteristic similar to that of 4.5 LC elements.
These approximations are only estimates for (2/9,> 0.6.
When /€, is less than 0.6, R becomes larger, resulting
in a more degraded performance for those filters con-
taining unit elements. However, most practical applica-
tions of wide-band microwave filters require steep skirt
characteristics in which the behavior near cutoff is of
greatest importance, and the above method of estima-
tion is sufficient. The exact attenuation curve can be
obtained from (8) and (22), if desired.

For wide-band filters, most choices of m and # result
in prototypes that can be more easily realized with stub-
type networks than with coupled line structures. The
designer has the freedom of choosing m and # to meet
specific size and performance requirements. Some unit
elements are usually required, since only a limited num-
ber of stubs can be placed at a single junction. Thus,
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Fig. 8. Plot of R vs.2/Q. Comparison of unit element and stub-type
element attenuation properties for high-pass prototypes.

TABLE IV

PARAMETERS FOR COMPARISON OF DIFFERENT QPTIMUM
MuLTIiPOLE FILTERS WITH E=m+n=7

10% BANDWIDTH 100% BANDWIDTH (3 1)

. n .
mn mEmt— Im n mo=mt—

R R

710 7 7 0 7
3|4 =7 3 4 =56
0|7 =7 [ 7 =45

‘R WAS CHOSEN TO BE 155

the m =7, and n=0 filter has the best response for all
cases listed in Table IV, but a practical network would
require the introduction of at least three redundant unit
elements. The use of m =7 and #=3 would result in an
improved filter by allowing the unit elements to contrib-
ute to the response. In the design example, a choice of
m=5 and #=2 resulted in a response which is but
slightly degraded from that of the case of m=7, #=0in
a structure only two thirds as long.

To obtain the best response from a filter of minimum
size, the designer should try to incorporate as many LC
elements as is practical. For wide-band designs the use
of a high n/m ratio leads to a large network with a rela-
tively poor response and should be avoided. In fact, in
many cases, a low value of 2 with a low #/m ratio pro-
vides approximately the same attenuation as a high &
value with a high #/m ratio. As an example, the re-
sponse characteristic of a conventional filter constructed
of shunt-shorted stubs placed a quarter wavelength
apart is compared in Fig. 9 with the characteristic of
the design example of Section V. The all-shunt-stub
network form was designed using m=1 and #=38§, and
is four times longer than the m =35 and #=2 case, the
latter of which exhibits a better response.

Redundant filter elements often must be incorporated
to obtain practical element values. The redundancy can
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Fig. 9. Comparison of filter characteristics that demonstrates the
size advantage obtained by using a low #/m ratio for wide-band
designs.

either be added in the LC part of the network as in the
design example, or in the unit element section [4], [12].
Redundant unit elements add length to the filter and
thus it is more desirable to add the redundancy into the
LC part of the network if possible. In wide-band designs
it is usually most convenient to obtain the optimum
multipole network and add redundant elements with the
aid of Kuroda’s Identities. For narrow-band designs,
where redundancy is often high, it is more convenient
to introduce redundant elements through the synthesis
procedure.?

VII. CoNCLUSIONS

The synthesis and design of a broad class of TEM
mode filters has been presented in a three-step pro-
cedure. General transmission response functions were
developed that give the “best” response (in a Butter-
worth or Chebyshev sense) for a given number of quar-
ter-wave elements. A synthesis and design procedure
was described that allows the realization of practical
distributed networks in the form of quarter-wave lines.
Direct application of the methods presented permits
the exact design of most conventional TEM mode filter
forms. By utilizing every quarter-wave element to aug-
ment the filter response, an optimum multipole filter
can be obtained. A comparison of the filtering properties
of stub-type elements with unit elements showed the
stub types to be always superior and increasingly better
for wider bandwidths. The unit element was shown to
give effective band-pass filtering for bandwidths up to
two octaves. The method of comparison presented can
be used to determine the response characteristics of
different optimum multipole network forms using band-

8 As described, for example, in Wenzel [4], pp 109-110.
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width as a parameter. Comparisons of this type are
useful in determining an optimum network form of
minimum size. Use of the low-pass to high-pass trans-
formation permits the band-pass results described to be
applied to band-stop filters.

The procedures presented are also applicable to the
design of certain types of waveguide filters for band-
widths of 20 per cent or less. These include those filter
forms in which the response of the waveguide elements
closely approximates that of TEM mode stub-type ele-
ments.

The basic approximating functions developed can
also be used to design multiplexing filter networks by
choosing the functions to represent squared magnitudes
of the transfer admittances (] Y12|2) or transfer im-
pedances (]Z12]2) and properly positioning the 3-dB
cutoff frequencies [11]. Synthesis procedures applicable
to obtaining a practical realization can be found in the
literature [11], [13]-[15].

To verify the optimum multipole theory, a seven-
section band-pass filter of 3 to 1 bandwidth was de-
signed and constructed. The experimental results fol-
lowed very closely those predicted by the theory.

VIII. APPENDIX

The equal ripple approximation to the ideal filter
characteristic will be obtained by direct development
from the definition of a constant amplitude rational
fraction all-pass function on the complex W-plane.?

A unit amplitude all-pass transfer function on the
imaginary axis in the complex W-plane is defined by:

W+ W
W, — W

e2$i(W) =

(26)

The root parameter W, must be real in order that (26)
be a rational unit amplitude function describing the
transfer characteristic of a realizable filter. However, if
a product of such functions is taken, the resulting unit
amplitude function will be rational if the W)s are
either real or occur in conjugate pairs. Thus a rational
unit amplitude transfer function on the imaginary axis
in W can be represented by the product,

(W, + W)
nw; — w)

29 W) = [[e2éi(W) =

@27

9 A similar approach has been used by Bennett {22], [23] for ap-
plication to RC lumped element networks and leads to the desired
equal ripple approximation via relatively simple logic. The rational
fraction functions used by Sharpe [24] and Helman [25], [26] for
lumped RC networks are also applicable but no justification 1s given
for their choice. Kohler and Carlin [27] go through a lengthy justifi-
cation after having chosen the proper approximation for the dis-
tributed optimum low-pass filter. Perhaps the earliest discovery of
the proper equal ripple approximating function for the distributed
optimum filter was recorded in a personal letter from Prof. Kuroda
to Prof. Ozaki in 1954, reference to which was found in unpublished
notes written by Prof. Fujisawa while a visiting lecturer at the Uni-
versity of Michigan in 1963.
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The high-pass equal ripple function Fg(S)=f(W) is

obtained by substituting transformation (31) into (30)
to give:

(VS — 52 + V/ST— 55 + (VS — 52 — /57 = 8.3)

(32)

Fu(S) =

where the symbol II indicates the product taken over
all roots W, which must occur in conjugate pairs if not
real. The magnitude of ¢2¢") ig unity on the imaginary
axis in W and the phase variation is monotonic. Sim-
ilarly, the positive square root of (27) is of constant
unit amplitude,

OvW:+ W

el = Jle/%r = P —
VW, — W

(28)

20+/S.2 — 82

The roots .S, in (32) may be chosen arbitrarily as long
as they occur in conjugate pairs if not real. It is noted
that the real roots S, =0 and S,= —1 permit the square
of Fyin (32) to have the same pole locations as those of
’p 2/ tlz in (9). If the pole locations of Fp are now
restricted such that m poles occur at .S; =0, correspond-
ing to m high-pass LC ladder elements, and # poles
occur at S;= —1, corresponding to #. u.e.’s, then (32)
for the optimum multipole equal ripple filter becomes

(jSe + V/S* = SH™VI = 52 + vV =527 + (jS. = V& = SHMVI=SF = V/ST=5)

(33)

Fu(S) =

with the symbol 2 indicating summation on all angles
¢; associated with roots W;. A real function f(WW) is
defined by

fW) = §(e* + ¢77%) = cos ¢ = cos Z¢,.  (29)

This function has a maximum amplitude of unity and

is the cosine of a monotonic varying angle ¢ along the

imaginary axis in W. Using (28) in (29),
aw,+w)+uaw, - w)

i (30)
AW 2 — W?

fw) =

which is equal ripple along the entire imaginary axis in
the W-plane.

A. Hzugh Pass

Equal ripple variation may be restricted to the high-
pass range on the imaginary S-plane axis S>S. by
applying to (30) the transformation:

W=+1-5/S2 W,=+1— 52/S2

This transform maps that portion of the positive
imaginary S-plane axis for which §> S, onto the entire
positive imaginary W-plane axis, as shown in Fig. 10.
The remainder of the positive imaginary S-plane axis
S <.S; maps onto the positive real axis in the W-plane
between unity and zero.

(31)

I I\

5~ PLANE W - PLANE
Se =19
1
z ’ T u

Fig. 10. Mapping of the positive imaginary S-plane axis onto the
W-plane by the high-pass transformation W =+v1—.2/S.2.

2(8)"(v/1 = 8%

This algebraic {fraction, representing a unit amplitude
optimum equal ripple approximation, can be expressed
alternately in Chebyshev polynomials by noting that
F(S)=f(W)=cos ¢=cos Z¢; in (29). Thus the <th
component phase angle ¢; is obtained by considering
only the 7th term from each of the products in (32) for
FHZ

\/Sz2 - Sﬂz

i (34)

Ccos ¢; =

The high-pass LC ladder element phase angle ¢r¢ is
established by setting S;=0; similarly, the u.e. phase
angle ¢, .. is established by setting .S,= —1, vyielding

7S.  tané,
cos = = ;
pio S tan 6
Vv1-=38.2 cos 6
COS Ppe, = ————=—= = . (35)
/1 —8%  cosé,

From (29) the high-pass approximating function Fgy
may be written alternately as

Fy = cos (mprc + néu.e.)
tan 6, cos @
Fg =T, T, )
tané cos 0,
tan 6, cos @
—Un U,
tané cos 4,
where T,(x) =cos (m arc cos x) and U,(x)=sin (m arc

cos x) are un-normalized mth degree Chebyshev poly-
nominals of the first and second kinds, respectively [19].

(36)
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B. Low Pass
A low-pass approximating function F, can be ob-
tained from the high-pass function Fy by replacing
each frequency parameter by its inverse. Thus, (35),
(33), and (36) become now, for the low-pass case,
o S tan @ ) Sv1-—38.2 sin 8 37
cos =— = 0S8 Py = e =
e S. tané§, S/l — 8% sin 6, 37
» S+ V8 = SH™(SV1 =82+ /5T = 5" + (S — VST = S)"(Sv1 =5 — /ST = S ) (38)
7, = |
2(S)mr(y/1 — S%)» N
FL = CO08 (m¢LC + %¢u.e.)
tané sin 6 tan @ sin 6
Fr=T, T, (— - U,,,( >U< ) (39)
tan 6, sin 6, tan 6, sin 6,

The functions Fgz and Fi exhibit equal ripple charac-
teristics and monotonic phase variation in their respec-
tive pass bands and have pole locations corresponding
to the R-matrix multiplication of unit elements and LC
ladder elements. The unit amplitude equal ripple func-
tions, Fg of (33) or (36) and Fy of (38) or (39), are each
multiplied by an arbitrary voltage ripple factor e and
then squared in order to form the Chebyshev approxi-
mation to the power reflection-to-transmission ratio.
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